DESIGN AND CONSTRUCTION OF HYDROCOOLING CHAMBER FOR FRUITS AND VEGETABLES STORAGE

Oluwalana, I. B., Olumurewa, J. A. V., Alao, A. I., Olfolaji, D. B., Amos, T. T., Oluwamakoni, M. O., Badejo, A. A. and Adeoye, B. K.

Department of Food Science and Technology, Federal University of Technology, Akure, Ondo State, Nigeria
Department of Crop, Soil and Pest Management, Federal University of Technology, Akure, Ondo State, Nigeria
Department of Agricultural Resources and Economics, Federal University of Technology, Akure, Ondo State, Nigeria

Corresponding Email: iboluwalam@yahoo.com

Abstract
Fruits and vegetables harvested at either physiological or commercial stages have very short shelf life as the fruits usually ripen within a week while the vegetables shrivel few hours after harvest, if they are not appropriately stored. Losses have shown up to 70% losses for both commodities under natural tropical conditions (30±2°C and 70±2% RH) when not well handled and stored. Unfortunately, tropical fruits and vegetables are adversely affected by cold temperatures below 12°C as they are prone to chilling injury, hence limiting the use of refrigeration in storing the fruits fresh. Moreover, most of the storage methods available in the developed temperate countries such as Controlled Atmosphere Storage, Hypobaric, Irradiation etc. are either too expensive or technologically sophisticated to be adopted for tropical fruits and vegetables. This study was therefore conceived and undertaken to develop a novel Dome-like Hydro-cooling Chamber kitted with Solar Energy powered Water-Cooling System, to maintain the temperature and humidity of stored fruits and vegetables at about 15°C and 85% RH respectively. Utilization of solar energy is due to irregularities and high costs of electricity in the developing nations including Nigeria. Preliminary results have shown that the dome-shaped structure with a cuboidal base of 7m x 4m x 2.5m and a dome top central height of 1.5m constructed with a non-hollow cement blocks of average weight of 23kg with dimensions of 0.46m x 0.23m x 0.15m and kitted with a solar energy powered water cooling system at about 10°C can achieve the storage conditions of about 15°C and 85% RH holding up to 28 metric tonnes of plantain fruits.

Keywords: Hydro-cooling chamber, Water Cooling System, Solar Energy, Storage, Fruits and Vegetables.

1.0 Introduction
Fruits are the succulent or fleshy covering of nuts which are pulpy in character and often juicy. Since they develop from flower of plants, they consist of the ripened seed or seeds with some edible tissues attached while vegetables are the leafy outgrowth of plants used as food and include those plants and parts of plants used in making soups or served as integral parts of the main sources of meal (Ihekoro and Ngoddy, 1985)

Fruits and vegetables are similar in composition; contain high percentage of water averaging 85%, with fat and protein in very small and varying amounts (Oluwalana, 2010). A considerable proportion of their carbohydrates are present as cellulose, starch (in small quantity) and sugar, while peptic substances form the intercellular cement layer of the fruits (Oluwalana, 2010). The firm structure of the under-ripe fruit is probably due to the presence of these peptic substances in the form of insoluble calcium salts of pectic acid which are decomposed during ripening process into water soluble pectin (Wills et al., 1981; Oluwalana, 2010). Fruits and vegetables are usually harvested either at physiological or commercial maturity stage and once harvested, they have very short shelf life, as most fruits ripen quickly (George, 1981; Olorunda and Awor, 1984) while most vegetables become shriveled or desiccated and quickly deteriorate if not properly stored (Wills et al., 1981).

Losses of more than 70% of fruits and vegetables have been reported at various points in their distribution system in Nigeria (Olorunda et al., 1978, Oluwalana, 2018). This has been attributed to poor post-harvest handling practices and lack of appropriate storage facilities and or technologies, which result in substantial part of the crops becoming damaged or completely unsuitable for human consumption by the time they reach the ultimate destination or consumers. This obviously deprives the consumers of numerous micronutrients, richly endowed in these commodities (Oluwalana, 2010; 2018). Refrigeration, air conditioning, controlled atmosphere storage (CAS), modified atmosphere storage (MAS), hypobaric storage, chemical treatment, hot water dip, irradiation and their combination/hurdle treatments were reported for extending the green and storage life of fruits and vegetables (Oluwalana, 2010; 2018; Majidi et al., 2014; Patel et al., 2015). The associated disadvantages of these technologies are their electricity-dependence, complexity and high cost; therefore, making them unsuitable in less technologically developed countries such as Nigeria (Olorunda et al., 1978; Oluwalana, 2010). Other problems associated with these methods are chilling injury and dehydration (Aghdan and Bododak, 2014;
Jin et al., 2014). Hence, there is need for the development of hydro-cooling storage system, which will prevent desiccation, slow down respiration and thereby delay ripening and deterioration of these low temperature sensitive commodities.

2.0 Materials and Methods

2.1 Materials and Equipment

The building materials (cement, stones dust and sand) used in putting up the hydro-cooling chamber were locally sourced from Akure, Ondo State, Nigeria. The lagged door and window were made from galvanized steel while 12 mm cast iron rod was used in reinforcing the decked top of the chamber. A 5 mm thick wired glass was used for the 4 small lighting windows.

2.2 Methodology

Brief Description of the Hydro-cooling Chamber

The hydro-cooling chamber is domelike in shape. This is to allow for better air circulation at the top. The base was cuboidal in shape, with 4 small lighting windows and 2 small humidity control exhausts. The chamber was lined with 2 inches (5cm) diameter stainless steel pipes that would transport cooling water round the room, thereby removing excess heat generated.

Design Analysis

Determination of the Required Volume of Hydro-cooling Chamber:

The cooling chamber is designed against 28 tonnes of plantain fruits, (using plantain fruits as reference for the design).

Density of plantain = 614 kgm$^{-3}$ (Falade and Oyeyinka, 2014);

Volume occupied = weight / density = 28 tonnes / 614 kgm$^{-3}$ = 45.6 m3

To give room for air space, passage and selves, half of the chamber is assumed to be utilized by fruits. This implies that the needed volume of the chamber = 2 x 45.6 m3 = 91.2 m3

Therefore, the cuboidal base of the chamber was calculated to be 7 m by 4 m by 2.5 m and the dome top being 1.5 m high, at the Centre, and rest on the 7 m long wall. This gives: Volume of the cuboid = 70 m3

Volume of the dome top = 24 m3

Total volume of the chamber = 94 m3

Determination of Total Heat Load of the Hydro-cooling Chamber:

The maximum heat load of the chamber was calculated based on the thermal and physical properties of the products to be stored.

Properties:

Thermal conductivity of concrete = 0.87 Wm$^{-1}$K$^{-1}$;

Thermal conductivity of fruits = 0.9 Kcal/ton/hr.

Specific heat of the fruits = 3778 Jkg$^{-1}$ K$^{-1}$;

Average heat of respiration of fruits = 10.4167 kcal (ton/hr$^{-1}$) = 6.39 Watts/ton;

Weight of the stored fruits (x) = 614 kgm$^{-3}$ x 47 m3

(assume half volume of chamber is stored with fruits) = 28,858 kg = 28,858 tons;

(1) Heat of respiration from fruits = 28.858tons x 6.39 Watts/ton = 184.4 kW

(2) Intake heat:

This is the heat that will be released from the fruits to cool down from field to storage temperature (Hp) = mcΔT

It is assumed that 20% of the storage load will be supplied daily and cooling to storage temperature will take place in two days

5600 x 0.9x (27-15) = 1,260 kCal/hr. = 1,465 Watts = 1.5 kW

(3) Heat loss through concrete walls and roofs =

\[\frac{0.87 \times \Lambda (T_a - T_c)}{h_c} \]

where \(A \) = total area of concrete floor, walls and roof;

\(h_c = 0.06 \) m

\(T_a \) = ambient temperature of the chamber = 32°C

\(T_c \) = final temperature of the fruits (15°C)

Allowing for standing time of 6hrs. per day, water cooling unit was selected to have capacity of:

\[\frac{215 \times 4}{3} = 287 \text{kW} \]

Cooling Water Rate

The cooling water rate for the removal of excess heat from the storage chamber based on 3 cases, that could be adjusted, are presented in Table 1. The cooling water rate is calculated based on lighting of and personnel inside the chamber, and the amount of products stored in the chamber.

Case 1: No lighting and personnel in the chamber (\(H_p = 0 \))

\[\left[m_p + 29.6 \right] + H_p \text{KW} = m_p \times 4.186 \times (T_c - T_w) = m_p \times 4.186 \times (15-10) \text{Kw} \]

where \(m_p \) = mass of product stored in the chamber, \(m_w \) = mass rate of the hydro-coolant (kgs$^{-1}$), and \(T_w \) = temperature at which the hydro-coolant enters the chamber. \(T_c \) = final temperature of stored fruits.

Case 2: One personnel with no bulb lighted in the chamber. Assuming a person produced 240W of heat in a day. Therefore, for time spent in the chamber;
Design and Construction of Hydrocooling Chamber

Case 3: One personnel with one 26 Watt-bulb lighted in the chamber

Note: In all the cases, either m_w or T_w could be manipulated to have a sustained temperature of 15°C in the chamber.

Table 1: Cooling water rates for chamber with a personnel, no lighting and with a personnel and lighting

<table>
<thead>
<tr>
<th>Products (tons)</th>
<th>Heat load (kW)</th>
<th>Cooling water rate (ltr/s)</th>
<th>Heat load (kW)</th>
<th>Cooling water rate (ltr/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>35.99</td>
<td>1.7195</td>
<td>36.016</td>
<td>1.7208</td>
</tr>
<tr>
<td>2.0</td>
<td>42.38</td>
<td>2.0248</td>
<td>42.406</td>
<td>2.0261</td>
</tr>
<tr>
<td>3.0</td>
<td>48.77</td>
<td>2.3301</td>
<td>48.796</td>
<td>2.3314</td>
</tr>
<tr>
<td>4.0</td>
<td>55.16</td>
<td>2.6355</td>
<td>55.186</td>
<td>2.6367</td>
</tr>
<tr>
<td>5.0</td>
<td>61.55</td>
<td>2.9408</td>
<td>61.576</td>
<td>2.9420</td>
</tr>
<tr>
<td>6.0</td>
<td>67.94</td>
<td>3.2461</td>
<td>67.966</td>
<td>3.2473</td>
</tr>
<tr>
<td>7.0</td>
<td>74.33</td>
<td>3.5514</td>
<td>74.356</td>
<td>3.5526</td>
</tr>
<tr>
<td>8.0</td>
<td>80.72</td>
<td>3.8567</td>
<td>80.746</td>
<td>3.8579</td>
</tr>
<tr>
<td>9.0</td>
<td>87.11</td>
<td>4.1620</td>
<td>87.136</td>
<td>4.1632</td>
</tr>
<tr>
<td>10.0</td>
<td>93.50</td>
<td>4.4673</td>
<td>93.526</td>
<td>4.4685</td>
</tr>
<tr>
<td>11.0</td>
<td>99.89</td>
<td>4.7726</td>
<td>99.916</td>
<td>4.7738</td>
</tr>
<tr>
<td>12.0</td>
<td>106.28</td>
<td>5.0779</td>
<td>106.306</td>
<td>5.0791</td>
</tr>
<tr>
<td>13.0</td>
<td>112.67</td>
<td>5.3832</td>
<td>112.696</td>
<td>5.3844</td>
</tr>
<tr>
<td>14.0</td>
<td>119.06</td>
<td>5.6885</td>
<td>119.086</td>
<td>5.6897</td>
</tr>
<tr>
<td>15.0</td>
<td>125.45</td>
<td>5.9938</td>
<td>125.476</td>
<td>5.9950</td>
</tr>
<tr>
<td>16.0</td>
<td>131.84</td>
<td>6.2991</td>
<td>131.866</td>
<td>6.3003</td>
</tr>
<tr>
<td>17.0</td>
<td>138.23</td>
<td>6.6044</td>
<td>138.256</td>
<td>6.6056</td>
</tr>
<tr>
<td>18.0</td>
<td>144.62</td>
<td>6.9097</td>
<td>144.646</td>
<td>6.9109</td>
</tr>
<tr>
<td>19.0</td>
<td>151.01</td>
<td>7.2150</td>
<td>151.036</td>
<td>7.2162</td>
</tr>
<tr>
<td>20.0</td>
<td>157.40</td>
<td>7.5203</td>
<td>157.426</td>
<td>7.5215</td>
</tr>
<tr>
<td>21.0</td>
<td>163.79</td>
<td>7.8256</td>
<td>163.816</td>
<td>7.8269</td>
</tr>
<tr>
<td>22.0</td>
<td>170.18</td>
<td>8.1309</td>
<td>170.206</td>
<td>8.1322</td>
</tr>
<tr>
<td>23.0</td>
<td>176.57</td>
<td>8.4362</td>
<td>176.596</td>
<td>8.4375</td>
</tr>
<tr>
<td>24.0</td>
<td>182.96</td>
<td>8.7415</td>
<td>182.986</td>
<td>8.7428</td>
</tr>
<tr>
<td>25.0</td>
<td>189.35</td>
<td>9.0468</td>
<td>189.376</td>
<td>9.0481</td>
</tr>
<tr>
<td>26.0</td>
<td>195.74</td>
<td>9.3521</td>
<td>195.766</td>
<td>9.3534</td>
</tr>
<tr>
<td>27.0</td>
<td>202.13</td>
<td>9.6574</td>
<td>202.156</td>
<td>9.6587</td>
</tr>
<tr>
<td>28.0</td>
<td>208.52</td>
<td>9.9627</td>
<td>208.546</td>
<td>9.9640</td>
</tr>
<tr>
<td>28.9</td>
<td>214.00</td>
<td>10.2247</td>
<td>214.0286</td>
<td>10.2259</td>
</tr>
</tbody>
</table>

Construction of the Hydro-cooling Chamber

The chamber was supported by six reinforced pillars; three on each side of the 7 m wall, and the concrete floor was about 6 cm thick to reduce heat transfer through the floor. The pictorial views of the chamber are shown in Figures 1 – 5. Non-hollow concrete bricks were made at the site with proper finesse using a mixture of thirteen head pans of sand, seven head pans of stone dust and 50 kg cement. Each brick/block has an average weight of 23 kg with dimensions of 0.4572 m by 0.2286 m by 0.1524 m; approximately 1,444 kg/m³. The picture of a sample of the molded brick is shown in Plate 1 below. The non-hollow bricks serve as strong insulator, preventing outside heat entering into the chamber.

Determination of Ambient Conditions:
The ambient conditions (temperature and humidity) of the empty chamber were measured using Digital-Davis Postharvest Pocket Thermometer (Delta Trak Needle Probe Thermometer, USA; Model 11065; Accuracy ±1°C and Max-Min Thermo-Hygrometer (Model HH439, China; Accuracy 1±%))
Figure 1: The Plan Features of the Hydro-Cooling Chamber
Design and Construction of Hydrocooling Chamber

Figure 2: The Front View of the Hydro-Cooling Chamber
- Rectangular WATER Storage Tank Supported by 50mm x 50mm Aluminum Pipes.
- 125mm Thick Reinforced Concrete Barrel Roof for Protection Against Adverse Weather Specified By The Structurer Engineer
- 150mm Thick Oversite Concrete Specified by Structural Engineering Details. 300mm Thick Well Compacted Hardcore Foundation to Structural Engineer Details.
- 150mm Thick Reinforced Concrete Barrel Roof Specified by the Structurer Engineer
- 150m x 150mm Reinforced Concrete, Concrete Column Specified by the Structurer Engineer
- 450mm x 150mm x 150mm Solid Concrete Block Plastered and Rendered With White and Green Paint
- 900mm Wide Entrance Iron Gate Painted Brown

Figure 3: The Side View of the Hydro-Cooling Chamber

Figure 4: Cold Water Circulatory System within the Chamber
3.0 Results and Discussion

The ambient conditions (temperature and humidity) of the empty chamber were 23 °C and 49% respectively while the outside conditions in December were 34 °C and 52% RH respectively. These average values were obtained from measurements taken at 6 hourly intervals for 3 days. The lower temperature and humidity recorded inside the chamber could be as a result of the non-hollow bricks (Plate 1) used for the construction, which insulate the room from the higher atmospheric temperature and humidity. However, there is very scanty information on variant to this in the literature for comparison. This helped in reducing the amount of cooling water needed to be transported through the system to achieve the desired storage temperature and humidity. There was a good air circulation at the top of the chamber due to the dome-like shape of the concrete roof with sufficient head space as stipulated in the materials and methods section above (Figures 2 & 3). Intermittent venting of respiratory gases particularly carbon dioxide and ethylene on 12 hourly basis through the use of the 2 small humidity control exhausts prevented the accumulation of ethylene gas in the chamber, which could have hasten the ripening of the stored fruits.

The heat loads by stored commodity and the corresponding cooling water rates required (Table 1) were observed to increase with increase in the volume (tons) of fruits stored in the chamber. These changes did not however vary significantly with the three scenarios of operating the chamber: (i) without personnel who is assumed to generate 240 Watts of heat inside and no lighting bulb (26 Watts) activated; (ii) with personnel but no lighting bulb there was no variation in conditions (i) and (ii) and (iii) with personnel and a lighting bulb activated. In all the cases, either the mass rate of the hydro-coolant (m) or the temperature at which the hydro-coolant (T) enters the chamber was manipulated to have a sustained temperature of 15 °C in the chamber. Moreover, the non-hollow bricks used in constructing the chamber, the dome-like concrete top, the lagged door, lagged window and the 5 mm thick wired transparent glasses for the 4 small viewing windows all served as strong insulators, minimizing the penetration of the outside heat into the chamber.

Results obtained have shown that the Hydro-cooling chamber can achieve the storage conditions of about 15°C and 85% RH while delaying ripening and thereby extending the shelf-life of the plantain fruits for up to 2 weeks. Similar delay in ripening and extension of shelf-life have been reported by Oluwalana (2010 and 2018) in his study of plantain fruits either treated with Semperfresh food surface coating or wrapped in 25-30µm polyethylene film bags stored at tropical ambient conditions (28±2°C and 70±5% RH).
4.0 Conclusion
The purpose for which this project was conceived (i.e. to develop a novel Dome-like Hydro-cooling Chamber kitted with Solar Energy powered Water-Cooling System as an alternative to electricity) has been partly achieved. The utilization of solar energy is due to irregularities and high costs of electricity in the developing nations including Nigeria.

Preliminary results have shown that the dome-shaped structure with a cuboidal base of 7m x 4m x 2.5m and a dome top central height of 1.5m constructed with a non-hollow cement blocks of average weight of 23kg with dimensions of 0.46m x 0.23m x 0.15m and kitted with a solar energy powered water cooling system at about 10°C can achieve the storage conditions of about 15°C and 85% RH holding up to 28 metric tonnes of green plantain fruits for 2 weeks before ripening. This is in comparison to the 3-5 days shelf-life achievable with the convectional ambient (28±2℃ and 70±5% RH) storage (Control). This hydro-cooling chamber, to a great extent could therefore be an adoptable technology in the tropical developing countries including Nigeria, to store fresh fruits and vegetables in order to keep them fresh and also extend their shelf lives.

References