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ABSTRACT 
This paper presented the direct block multistep method for solving third order initial value problems in ordinary 
differential equations. Method of collocation and interpolation of power series approximate solution was used to derive a 
continuous linear multistep method. Block method was later used to generate the non-overlapping solution at selected 
grid points. The method is self-starting, not requiring developing separate predictors to implement it and it is better than 
the conventional predictor-corrector (P-C) methods. Of great interest are some basic properties of the new block 
multistep method, such as, convergence, order, error constant and zero-stability. These basic properties were 
investigated. The performance of the new block method was tested with some third order initial value problems. 
Keywords: Linear multistep methods (LMMs); Zero-stability; Third order; Initial Value Problems (IVPs); Ordinary 
Differential Equations (ODEs); Interval of periodicity; Predictor-corrector (P-C)  
 
INTRODUCTION 
Consider the nth order initial value problems in 
ordinary differential equation of the form:  

,                                            (1)  

.                                 
assuming that the numerical solution is required 
on a given set of mesh, 

},......1,0,,/{ 1 Nnxxhnhaxx nnnn  

 where N =  (b-a) / h.                                                             
This class of problems (with the absence of 
derivatives on right hand side) has a lot of 
applications in the fields of science and 
engineering and some other areas. The reduction 
of (1) to system of first order equations will lead 
to a greater computational cost, hence, we resort to 
numerical methods. The purpose of this present 
paper was to develop an alternative approach 
based on the block linear multistep method for the 
direct solution of third order ordinary differential 
equations. 
  There are considerable literature on the 
methods of solution to higher order Ordinary 
Differential Equations (ODEs) by predictor-
corrector methods (Lambert, 1973; 1991; 
Onumanyi et al., 1994;  Fatunla, 1994 ; Awoyemi, 
2003; Awoyemi and Idowu, 2005; Adee et al., 
2005). These methods have certain limitations; the 

computer programmes associated with the 
methods are often complicated especially when 
incorporating subroutines to supply the starting 
values for the methods, thus resulting in longer 
computer time and more computational work 
(Jator, 2007). 

Recently, authors adopted block methods 
for solving higher order ODEs (Jator, 2007; 
Olabode and Yusuph, 2009; Siamak, 2010; 
Awoyemi et al., 2011). In particular, Olabode and 
Yusuph (2009) developed a new block method for 
special third order ODEs for step number k equals 
three and which was better in accuracy and 
efficiency than Awoyemi (2003). In Jator (2007), 
a class of initial value methods for the direct 
solution of second order initial value problems 
were constructed, linear multistep methods with 
continuous coefficients were obtained and applied 
as simultaneous numerical integrators 
to ),,( yyxfy  . The implementation strategy 
is more efficient than those given in Awoyemi 
(1999) which are applied over overlapping 
intervals in predictor-corrector mode.   

Moreover, Yap et al., (2008) developed 
block methods based on Newton interpolation for 
solving special second other ODEs directly. Majid 
et al., (2010) derived variable step size block 
method for solving directly third order ODEs.  
Majid et al., (2012) constructed two-point four 
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step block method for the solution of general third 
order ODEs.  
Therefore, this paper proposes the block multistep 
method of step number k equals six, for the direct 
solution of third order initial value problems of 
ordinary differential equations. 

MATERIAL AND METHODS 
In this section, before describing the method, the 
theorems that establish the existence and 
uniqueness of the solutions of higher order 
ordinary differential equations are stated. 

 
 
Theorem 2.1:  (Wend, 1967). 
 Given the general nth order initial value problem (1).  
Let R be the region defined by the inequalities    
  ,   where  for  .  
 Suppose the function  in equation (1) is non-negative, continuous and non-
decreasing in  and   in the region R.  
If in addition  in R for  then, equation (1) has at most one solution in 
R.  
Theorem 2.2:  (Wend, 1967). 
Let             (2a) 
where and  are scalars. Let R be the region defined by the 
inequalities , . Suppose the function 

 is defined in R and in addition:  
(a)  is non-negative and non-decreasing in each of   in R; 
(b)  for  and 
(c) .  

Then, (2a) has a unique solution in R.  
For the purpose of this research work, we shall consider the ODE of the type 

),()( yxfxy  ,      )(    , )(  ,)(y  100   ayayya     (2b)                     
Moreover, a power series of a single variable x in the form: 







0

)(
j

j
j xaxP             (3) 

is used as the basis or trial function, to produce the approximate solution as 
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Assuming an approximate solution to (1) in the form of (4) whose high derivatives 
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From (1) and (8) one obtains: 
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

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j
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where  are the parameters to be determined. For step number six, equation (9) was collocated at the grid-
points  and equation (4) was interpolated at 0, 1, 2.    







 

1

0
jn ))1()....(3)(2)(1(f  

k

j

nj
jnj xanjjjjj                                     (10)                                                 

2 ,1  ,0,y  
1

0
jn 






 jxa

k

j

nj
jnj                                                                                 (11) 

 
 
In Jator (2007), matrix inversion approach was employed in the determination of the unknown parameters. 
Putting (10) and  (11) in the form  of matrix equation and then solving the resulting equations so as  to obtain 
parameters aj , yields,  after some manipulation,  the new continuous method     

 
 

 
2

0 0
)()()(

j

k

j
jnjjnj fxyxaxy                                                                             (12)                                   

It was then applied as simultaneous numerical integrator in sequential mode to solve third order ordinary 
differential equations. The method eliminates the use of predictors by providing sufficiently accurate 
simultaneous difference equations from a single continuous formula and its derivative. Moreover, this method 
is cheaper to implement since it is self-starting and therefore the limitations are circumvented. 
 
The coefficients )(  )( xandx jj  of (12) are expressed as functions of   t 

h
xxt n 1

   

and these are: 
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The discrete scheme form of (13) is: 

21

3

`126 2575051415642341(
30240

102415   nnnnnnn fffhyyyy  

(14)                                        )45113044 66615123280 6543   nnnn ffff with 

order   8p  and the error constant 03
10 373015873.3C    

where  6)n1(0k   ),y ,(x kkk  ff  
The first and second derivatives of (14) were also found. 
 
SPECIAL APPLICATIONS OF THE NEW BLOCK LMM 
Here, special application of the method is discussed. The evaluation of (13) at x = xn+3 , x = xn+4 and    x = 
xn+5, X= xn+6   yield,  respectively, the four integrators: 
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The basic properties of the new block multistep method, such as convergence, order, error constant and zero-
stability were determined. The method was found to be consistent and convergent with order 

 8p  constant error  and 03
10 373015873.3C   .  Following Fatunla (1994) and Lambert (1973), the 

linear difference operator L is defined as: 

)]()([]);([ 4

0

jhxyhjhxyhxyL iv
j

k

j
j 



                     (17) 

where y(x) is the exact solution to (1) and is assumed to be sufficiently differentiable. We now invoke the 
Taylor‘s theorem to obtain  
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)()(  . ..)()(]);([ 2)(
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whose coefficients Cq, q = 0,1,..  are constants independent of y(x) are given as: 
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The order p of the difference operator L[y(x); h] is a unique integer p such that  
Cq = 0, q = 0(1) p+1, CP+2 0 (Henrici 1962). 

For convenience and in order to determine the zero stability of the method, equations (15) and (16) are written 
as block method given by the matrix difference equation. The first-block of linear multistep method for the 
third order initial value problem designated by equation (1) can be expressed by the following matrix difference 
equation: 

 A(o). yq = A(1).yq-1 + h3B(0).Fq+ BFq-1                                                                                    (20)    
   where, yq = (yn+1, yn+2……..,yn+6)T,yq-1 = (yn-5, yn-4.....……,yn)T 

fq-1 = (fn-5, fn-4,......., fn)T , fq = (fn+1, fn+2,…..., fn+6.)T, q = 0, 1, ....... 
and n= 0, 6….and the matrix Ao is an identity matrix 
 
NUMERICAL EXPERIMENTS AND RESULTS 
This section deals with the implementation of some algorithms proposed for problem (1)   

2
2
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issolution   lTheoretica                   
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2
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Table 1: Comparison of absolute errors of Block multistep method of order eight and those of 
Predictor-Corrector method of the same order eight. 

X Exact 
solution y(x) 

y-computed Errors in block 
multistep 
method of 
order Eight 
 

Errors  in Predictor-
corrector method of  
same order eight 
 

0.1 0.990012496 0.990012496 1.65922E-10 4.172279744E-09 
0.2 0.960199734 0.960199734 4.76275E-10 9.578546178E-08 
0.3 0.911009467 0.911009468 6.23182E-10 3.991586710E-07 
0.4 0.843182982 0.843182984 19.9134E-10 1.036864440E-06 
0.5 0.757747686 0.757747686 3.28882E-10 2.128509889E-06 
0.6 0.656006845 0.656006846 1.27096E-09 3.789539851E-06 
0.7 0.539526562 0.539526567 4.84653E-09 6.130086676E-06 
0.8 0.410120128 0.410120139 1.09585E-08 9.253867047E-06 
0.9 0.269829905 0.269829925 2.0188E-08 1.325714643E-05 
1.0 0.120906918 0.120906953 3.53956E-08 1.822777782E-05 
1.1 -0.034211636 -0.034211579 5.66233E-08 2.424432295E-05 
1.2 -0.192926737 -0.192926653  8.35700E-08 3.137526880E-05 

It could be observed in table 1, that the block multistep method of order eight is more accurate than the 
predictor-corrector method of order eight for problem 1. 
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Table 2:  Comparison of absolute errors of Block LMM of order eight and those of  
Predictor-Corrector Method of the same order for Problem 2, h = 0.1. 
X  Exact solution 

y(x)             
 Block multistep 
method 
y-computed 

Errors  Block in 
block multistep 
method 
 

Errors in Predictor-
Corrector Method of order 
eight 

0.1 3.125170918 3.125170919 9.24352E-10 1.403538619E-09 
0.2 3.301402758 3.30140276 18.3983E-10 3.269138249E-08 
0.3 3.529858808 3.52985881 24.2400E-10 1.395151714E-07 
0.4 3.811824698 3.811824703 53.5873E-10 3.723331807E-07 
0.5 4.148721271 4.14872127 7.00128E-10 7.869058836E-07 
0.6    4.54211885 4.5421188 3.90509E-10 1.444874331E-06 
0.7 4.993752707 4.993752714 6.52952E-09 2.414343780E-06 
0.8 5.505540928 5.50554095 2.15075E-08 3.770586333E-06 
0.9 6.079603111 6.07960315 3.88430E-08 5.596789306E-06 
1.0 6.718281828 6.71828189 6.15410E-08 7.984910299E-06 
1.1 7.424166024 7.424166114 9.00536E-08 1.103654222E-05 
1.2 8.200116923 8.20011705 1.27263E-07 1.486399811E-05 
The direct block multistep method of order eight is more accurate than when it was implemented in predictor-
corrector mode as shown in table 2 above. 
Problem 3 

x-y(x)                  
issolution   lTheoretica                  

1(0)y    , -1(0)y     ,1)0(                  
                  

e

y
yy






 

 Table 3: Absolute Errors For The Block LMM for Problem 2, h=0.1 
X  Exact solution y(x)             y-computed Errors in block multistep 

method 
0.1 0.904837418 0.904837416 1.66845548E-09 
0.2 0.818730753 0.818730742 1.07247812E-08 
0.3 0.740818221 0.740832811 1459.00969E-08 
0.4 0.670320046 0.67031999 5.60600832E-08 
0.5 0.60653066 0.606530552 1.07616918E-07 
0.6 0.548811636 0.548811456 1.80036532E-07 
0.7 0.496585304 0.496581992 3.31228689E-06 
0.8 0.449328964 0.449675668 3.46704102E-04 
0.9 0.40656966 0.408849308 2.27964863E-03 
1.0 0.367879441 0.374259661 6.38022004E-03 
1.1 0.332871084 0.345512915 1.26418315E-02 
1.2 0.301194212 0.32225658 2.10623676E-02 
 
CONCLUSION 
In this paper, the block multistep method of order 
eight has been developed and implemented in 
sequential mode. It was more accurate than the 
predictor-corrector method of the same order as 

shown in tables 1 and 2. Evaluation of the 
continuous formula along with its derivatives 
where necessary, leads to k simultaneous discrete 
linear multistep methods of comparable 
convergence properties for a simultaneous 
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application to the ordinary differential equations 
of the form (1) in block form with fixed or 
variable step-size, thereby eliminating the 
requirement of additional starting values from 
other one-step methods.  
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