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ABSTRACT

This paper presented the direct block multistep method for solving third order initial value problems in ordinary
differential equations. Method of collocation and interpolation of power series approximate solution was used to derive a
continuous linear multistep method. Block method was later used to generate the non-overlapping solution at selected
grid points. The method is self-starting, not requiring developing separate predictors to implement it and it is better than
the conventional predictor-corrector (P-C) methods. Of great interest are some basic properties of the new block
multistep method, such as, convergence, order, error constant and zero-stability. These basic properties were
investigated. The performance of the new block method was tested with some third order initial value problems.
Keywords: Linear multistep methods (LMMs); Zero-stability; Third order; Initial Value Problems (IVPs); Ordinary
Differential Equations (ODES); Interval of periodicity; Predictor-corrector (P-C)

INTRODUCTION
Consider the nth order initial value problems in
ordinary differential equation of the form:

y® = LY Yo F i ---}"‘n_-'}j
, 1)

yia) = vy o, via) =y, i=1(1)n—1,n =3

assuming that the numerical solution is required
on a given set of mesh,
[T={x,/x,=a+nh,h=X_,—X
where N = (b-a) / h.

This class of problems (with the absence of
derivatives on right hand side) has a lot of
applications in the fields of science and
engineering and some other areas. The reduction
of (1) to system of first order equations will lead
to a greater computational cost, hence, we resort to
numerical methods. The purpose of this present
paper was to develop an alternative approach
based on the block linear multistep method for the
direct solution of third order ordinary differential
equations.

There are considerable literature on the
methods of solution to higher order Ordinary
Differential Equations (ODEs) by predictor-
corrector methods (Lambert, 1973; 1991;
Onumanyi et al., 1994; Fatunla, 1994 ; Awoyemi,
2003; Awoyemi and ldowu, 2005; Adee et al.,
2005). These methods have certain limitations; the

n?

n=04...N}
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computer programmes associated with the
methods are often complicated especially when
incorporating subroutines to supply the starting
values for the methods, thus resulting in longer
computer time and more computational work
(Jator, 2007).

Recently, authors adopted block methods
for solving higher order ODEs (Jator, 2007;
Olabode and Yusuph, 2009; Siamak, 2010;
Awoyemi et al., 2011). In particular, Olabode and
Yusuph (2009) developed a new block method for
special third order ODEs for step number k equals
three and which was better in accuracy and
efficiency than Awoyemi (2003). In Jator (2007),
a class of initial value methods for the direct
solution of second order initial value problems
were constructed, linear multistep methods with
continuous coefficients were obtained and applied
as simultaneous numerical integrators
toy”= f(x,y,y’). The implementation strategy

is more efficient than those given in Awoyemi
(1999) which are applied over overlapping
intervals in predictor-corrector mode.

Moreover, Yap et al., (2008) developed
block methods based on Newton interpolation for
solving special second other ODEs directly. Majid
et al., (2010) derived variable step size block
method for solving directly third order ODEs.
Majid et al., (2012) constructed two-point four
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step block method for the solution of general third MATERIAL AND METHODS

order ODEs. In this section, before describing the method, the
Therefore, this paper proposes the block multistep theorems that establish the existence and
method of step number k equals six, for the direct uniqueness of the solutions of higher order
solution of third order initial value problems of ordinary differential equations are stated.

ordinary differential equations.

Theorem 2.1: (Wend, 1967).
Given the general nth order initial value problem ().
Let R be the region defined by the inequalities
N=r—x,=a,ly,—v|I<h k=01 _..n—1 wherey, =0for k=0,
Suppose the function f{x, g, Ty, % ...T, _y J in equation (1) is non-negative, continuous and non-
decreasing inx and 7, k =0,1,2..,n — 1 inthe region R.
If in addition f (x, V4, ¥4, Vasees ¥y ) ¥ 0inR for x = x,then, equation (1) has at most one solution in
R.
Theorem 2.2: (Wend, 1967).
Let wg,y = f[x_. w, w, .., wny ), wixd (xq) = g, (2a)
where k=0,1,2,..,(n —1),wand f are scalars. Let R be the region defined by the
inequalitiesxy = x5 + @, | 1; — c}-|, j—0,1,..n—1,(uz>=0,b>=0).  Suppose the function
flx, 15, 1, 7y .1, 4 Jisdefined in R and in addition:
(@) f isnon-negative and non-decreasing ineach of x, 7, 1y, 7 ..,7, _, iNR;
(b) flx, €p c4s €5, e, Cpeq) = 0f0rxy < x < x,+ aand
€ € =0k=012 ..n—1
Then, (2a) has a unique solution in R.
For the purpose of this research work, we shall consider the ODE of the type

y'"(x)=1f(xy), y@=y, y@=n,, y'@=mn (2b)
Moreover, a power series of a single variable x in the form:
PO =2 a,x’ 3)
j=0
is used as the basis or trial function, to produce the approximate solution as
k+1
yo) = a;x’
=i (4)

a; eR, j=0Dk +2,yeC"(a,b)c P(x).

Assuming an approximate solution to (1) in the form of (4) whose high derivatives
k+1

Y09 = i(i-Dax” ®)

Y00 =3 i(i-(i-2)a X' ®

V(=3 (-0 -2 -Iax 0
Y00 =3 1(i-(-2)(1-9.. (i~ (-D)(i -max” ®

From (1) and (8) one obtains:
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k+1

FO0Y Yy ey == 2 I =D =2 -9 (0-D)( —ma™ (@)

where a}-“s are the parameters to be determined. For step number six, equation (9) was collocated at the grid-

points x = x,,.;,j = U(1)kand equation (4) was interpolated at 0, 1, 2.
k+1

f= Z G- -2(i=3).(i - (n=D)ax,,;"”" (10)

K+1

Yoy = 2,8%., " 1=0,12 (1)
j=0

In Jator (2007), matrix inversion approach was employed in the determination of the unknown parameters.
Putting (10) and (11) in the form of matrix equation and then solving the resulting equations so as to obtain
parameters a; , yields, after some manipulation, the new continuous method

y(X) :Zaj(x)yn+j +Zﬁj (X) 1:n+j (12)
j=0 j=0

It was then applied as simultaneous numerical integrator in sequential mode to solve third order ordinary
differential equations. The method eliminates the use of predictors by providing sufficiently accurate
simultaneous difference equations from a single continuous formula and its derivative. Moreover, this method
is cheaper to implement since it is self-starting and therefore the limitations are circumvented.

The coefficients a ; (x) and B; (x) of (12) are expressed as functions of t

— X=X

h
and these are:

& :%(tz —t)

t

a, = (-t* +1)

1
a, =E(t2 +1)

3
By = %8800{1&8 —225t° +2040t" —9450t° + 23016t° — 25200t* + 34875t — 25066t}
3
B = m{—eoﬁ +1260t® —10080t” + 35280t° — 24696t> —194040t* + 604800t°
+157500t? — 569964t}
3
B, %{150? —2925t% + 20520t " —52290t° —42840t° + 378000t * — 322785t + 22170t}
3
Bs= 36228 0 {—200t° +3600t® — 22080t” + 40320t° + 78960t° — 252000t + 208080t — 56680t)
3
Bi= %{150? —2475t% +13320t" —18270t° — 47880t° +126000t* —105255t? + 34410}
3
Bs = %ZZW{—W +900t® —4320t" +5040t° +15624t> —37800t* +31860t> —11244t}
3
= {10t° —135t® + 600t” — 630t° — 2184t° + 5040t* — 4275t +1574t (1
° 362hssoo 0t® —135t" +600t" — 630t° — 2184t° + 5040t * — 4275t 3
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The discrete scheme form of (13) is:

h3
Vo ~15Yn.z + 24Y,0 —10Y, =2 o (2341F, +141564, , + 257505f .,
+123280f, , + 66615f , +13044f _ +451f ) (14) with

order p=8 and the error constant C,, = -3.373015873, %

where f, =f(X,,y,), k=0@Dn+6
The first and second derivatives of (14) were also found.

SPECIAL APPLICATIONS OF THE NEW BLOCK LMM
Here, special application of the method is discussed. The evaluation of (13) at X = Xq+3 , X = XpsaanNd X =
Xn+s, x= Xn+s Yi€ld, respectively, the four integrators:

h3
Yos —19Y,., +24y, ., —10y, :m(2341fn +141564f ,

+66615f,,, +13044f . +451f, )
with order p =8 and error constant C,, =-3.37301587e

3

~ 30240

+257505f, , +123280f, ,

n+2

Yo.s —10Y,,, +15Y, . —6Y, (1391f, +84894f,, +145605f,, +52820f, , +18345f

n+4

7861, +131f, ;)
with orderp =8 and error constant C,, =-2.24867724% *

3

+65739f, , +10544f

(695, +42324f
30240

~516f . +65f )
with order p =8and error constant C,, = —1.124338624e *

3

Yoia — 6yn+2 + 8yn+l‘ - 3yn = n+2 ne3 T 2109 1:n+4

Vs =3V + 3V — Yy = (221f, +14109f,, +16986f, , —1774f , +921f,,

30240
_255f,,. +32f,.,) (15)
hZ 4ty oy 43y - h* (96967 +644628f _ —288165f  +251440f
n+6 2 n+2 n+1 2 n 1814400 n n+l n+2 n+3
-137235f, , +43068f, —5903f )
with order p =8 and error constant C,, = —2.609126984e .
h3
h?z! . — +2y .. —Y. = —537735f —1795860f ., +1071045f ., —917040f
n+6 yn+2 yn+l yn 1814400( n n+l n+2 n+3
+501075f, —157500f, , +21615f )
with order p=8 and error constant C,, =9.628527337¢ (16)

The basic properties of the new block multistep method, such as convergence, order, error constant and zero-
stability were determined. The method was found to be consistent and convergent with order

p=8 and error constant C,, =-3.373015873L*. Following Fatunla (1994) and Lambert (1973), the
linear difference operator L is defined as:

L[Y(X):h]=Z[Of,-Y(X+ i) —h*g;y" (x+ jh)] (17)

where y(X) is the exact solution to (1) and is assumed to be sufficiently differentiable. We now invoke the
Taylor*s theorem to obtain
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L[y(x);h] = Coy(x) + C;hy'(X) +... +C,h?y @ (x) +0(h**?) (18)
whose coefficients Cq, g =0,1,.. are constants independent of y(x) are given as:
k
C, = Zai
j=0
k -
C = Z Ja;
j=1
11 . K
Co=y D % —a@-0Y "B, (19)
L=t j=1

The order p of the difference operator L[y(x); h] is a unique integer p such that
Cq=0,q=0(1) p+1, Cp:2# 0 (Henrici 1962).
For convenience and in order to determine the zero stability of the method, equations (15) and (16) are written
as block method given by the matrix difference equation. The first-block of linear multistep method for the
third order initial value problem designated by equation (1) can be expressed by the following matrix difference
equation:
APy, = AD .y +h*BO.F+ BF g,
where, Y = (Ynss, Ynsz.......Ys6) Yot = (Va5 Yot Vo) '

fq—l = (foesy Toeapennne ) fn)T ) fq = (fosrs Trozo., fn+6.)T'q =0,1,...
and n=0, 6....and the matrix A°is an identity matrix

(20)

NUMERICAL EXPERIMENTS AND RESULTS
This section deals with the implementation of some algorithms proposed for problem (1)

1. y" = 3sin x

y©0)=1 y'(0)=0,
Theoretical solution is

y'(0) =-2
2
y(X) = 3cosx +X?— 2

Table 1: Comparison of absolute errors of Block multistep method of order eight and those of
Predictor-Corrector method of the same order eight.

X Exact y-computed Errors in block Errors in Predictor-
solution y(X) multistep corrector method of
method of same order eight
order Eight
0.1 0.990012496  0.990012496 1.65922E-10 4.172279744E-09
0.2 0.960199734 0.960199734 4.76275E-10 9.578546178E-08
0.3 0.911009467 0.911009468 6.23182E-10 3.991586710E-07
0.4 0.843182982 0.843182984 19.9134E-10 1.036864440E-06
0.5 0.757747686 0.757747686  3.28882E-10 2.128509889E-06
0.6 0.656006845 0.656006846 1.27096E-09 3.789539851E-06
0.7 0.539526562 0.539526567  4.84653E-09 6.130086676E-06
0.8 0.410120128 0.410120139 1.09585E-08 9.253867047E-06
0.9 0.269829905 0.269829925 2.0188E-08 1.325714643E-05
1.0 0.120906918 0.120906953  3.53956E-08 1.822777782E-05
1.1 -0.034211636 -0.034211579 5.66233E-08 2.424432295E-05
1.2 -0.192926737 -0.192926653 8.35700E-08  3.137526880E-05

It could be observed in table 1, that the block multistep method of order eight is more accurate than the

predictor-corrector method of order eight for problem 1.
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m X

y'=e
y(0) =3,

y(0) =1,

Theoretical solution is

y(X) = 2+ 2x?

+e*

y'(0)=5

Table 2: Comparison of absolute errors of Block LMM of order eight and those of
Predictor-Corrector Method of the same order for Problem 2, h = 0.1.

X Exact solution Block multistep Errors  Block in Errors in Predictor-

y(X) method block multistep Corrector Method of order
y-computed method eight

0.1 3.125170918 3.125170919 9.24352E-10 1.403538619E-09

0.2 3.301402758 3.30140276 18.3983E-10 3.269138249E-08

0.3 3.529858808 3.52985881 24.2400E-10 1.395151714E-07

0.4 3.811824698 3.811824703 53.5873E-10 3.723331807E-07

0.5 4.148721271 4.14872127 7.00128E-10 7.869058836E-07

0.6 4.54211885 4.5421188 3.90509E-10 1.444874331E-06

0.7 4.993752707 4.993752714 6.52952E-09 2.414343780E-06

0.8 5.505540928 5.50554095 2.15075E-08 3.770586333E-06

0.9 6.079603111 6.07960315 3.88430E-08 5.596789306E-06

1.0 6.718281828 6.71828189 6.15410E-08 7.984910299E-06

1.1 7.424166024 7.424166114 9.00536E-08 1.103654222E-05

1.2 8.200116923 8.20011705 1.27263E-07 1.486399811E-05

The direct block multistep method of order eight is more accurate than when it was implemented in predictor-

corrector mode as shown in table 2 above.
Problem 3

y"=-y
y(0) =1,

y'(0) =-1,

Theoretical solution is

Y = e”

y'(0)=1

Table 3: Absolute Errors For The Block LMM for Problem 2, h=0.1

X Exact solution y(x) y-computed Errors in block multistep
method
0.1 0.904837418 0.904837416 1.66845548E-09
0.2 0.818730753 0.818730742 1.07247812E-08
0.3 0.740818221 0.740832811 1459.00969E-08
0.4 0.670320046 0.67031999 5.60600832E-08
0.5 0.60653066 0.606530552 1.07616918E-07
0.6 0.548811636 0.548811456 1.80036532E-07
0.7 0.496585304 0.496581992 3.31228689E-06
0.8 0.449328964 0.449675668 3.46704102E-04
0.9 0.40656966 0.408849308 2.27964863E-03
1.0 0.367879441 0.374259661 6.38022004E-03
1.1 0.332871084 0.345512915 1.26418315E-02
1.2 0.301194212 0.32225658 2.10623676E-02

CONCLUSION

In this paper, the block multistep method of order
eight has been developed and implemented in
sequential mode. It was more accurate than the
predictor-corrector method of the same order as
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shown in tables 1 and 2. Evaluation of the
continuous formula along with its derivatives
where necessary, leads to k simultaneous discrete
linear multistep  methods of comparable
convergence properties for a simultaneous
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application to the ordinary differential equations
of the form (1) in block form with fixed or
variable step-size, thereby eliminating the
requirement of additional starting values from
other one-step methods.

REFERENCES

Adee, S. O., Onumanyi, P., Sirisena, U. W.
and Yahaya, Y. A. (2005). Note On Starting
Numerov Method More Accurately By A
Hybrid Formula Of Order Four For An Initial
Value Problem, Journal of Computational and
Applied Mathematics 175: 369-373
DOI:10.1016/j.cam.2004.06.016.

Awoyemi, D. O. (1999). A Class of Continuous
Methods for General Second Order Initial
Value Problems in Ordinary Differential
Equations. International Journal of Computer
Mathematics 72: 29-37.

Awoyemi, D. O., Adebile, E. A., Adesanya, A.
O. and Anake, T. A. (2011). Modified block
method for the direct solution of second order
ordinary differential equations. International
Journal of Applied Mathematics and
Computation 3(3): 181-188.

Awoyemi, D. O (2003). A P-stable linear
multistep method for solving general third
order  ordinary  differential  equations.
International Journal of Computer
Mathematics 8: 985-991. DOl:
10.1080/0020716031000079572.

Awoyemi, D. O. and Idowu, O. (2003). A class
hybrid collocation method for third order of
ordinary differential equations. International
Journal of Computer Mathematics 82: 1287-
1293.

Fatunla, S. O. (1994). A Class of Block Methods
for Second order I1VPs. International Journal of
Computer Mathematics 55:119-133.

Jator, S. N. (2007). A Class of Initial Value
Methods for the Direct Solution of Second
Order Initial Value problems, a paper
presented at Fourth International Conference of
Applied Mathematics and Computing Plovdiv,
Bulgaria August 12-18.

Henrici, P. (1962). Discrete variable methods for
ordinary differential equations. John Wiley and
sons , U.K

Lambert, J. D. (1973). Computational Methods
in Ordinary Differential Equations, New York;
John Wiley & Sons. London, 1973.

Lambert, J. D. (1991). Numerical Methods for
Ordinary Differential Systems, John Wiley,
New York .

Majid, Z. A., Suleiman, M. B. and Amin, N. A.

200

(2010).Variable step size block method for
solving directly third order odes. Far East
Journal of Mathematical Sciences 41(1):63-73.

Majid, Z. A., Azim, N. A., Suleiman, M. B.
and lIbrahim, Z. B. (2009). A New Block
Method For Special Third Order Ordinary
Differential Equations. Journal of Mathematics
and Statistics Society, Science Publication, U.S
A 5(3):167-170,

Onumanyi, P., Jator, S. N. and Sirisena, U. W.

(1994).  Continuous  Finite  Difference
Approximations for Solving differential
Equations, International Journal Computer

Mathematics 72 (1): 15-27.

Siamak, M. (2010). A direct variable step block
multistep method for solving general third
order ODE's. Journal of Numerical Algorithm
DOI 10.1007/S11075-010-9413-X.

Wend, V. V. (1969). Existence and Uniqueness
of solution of ordinary differential equation.
Proceedings of the American Mathematical
Society 23(1): 27-33.

Wend, V. V (1967). Uniqueness of solution of
ordinary differential equation. The American
Mathematical Society 74(8): 27-33.

Yap, L. K., Ismail, F., Suleiman, M. B. and
Amin, S. M. (2008). Derivation of block
methods based on Newton interpolation for
solving special second other ode directly.
Journal of Mathematics and Statistics 4(3):
174-180.



