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ABSTRACT 
The dynamic response of a simply supported Rayleigh beam to moving load is investigated in this work. 
The Finite Fourier Sine transformation is used to reduce the governing fourth order partial differential 
equation to a second order ordinary differential equation which is solved using the Laplace 
transformation and the convolution theory. It is observed that as the value of the mass per unit length   
of the beam increases, the deflection amplitude of the beam increases. The investigation of the state of 
resonance reveals that an increase in the mass per unit length of the beam decreases the critical speed of 
the moving load. This suggests that additional mass should be reduced as much as possible in order to 
guarantee the safety of the load moving on the structure [e.g vehicles parking on bridges should be 
avoided because it adds to the mass of the bridge]. 
Keywords: Rayleigh beam, Simply supported, Resonance, Rotatory inertial, Critical speed. 
 
INTRODUCTION 
Many authors have considered the forced 
vibrations of elastic bodies such as beams 
and plates. The force, which causes these 
vibrations in a beam, may be a function of 
space co-ordinate only or a force, which 
varies in both space and time. Among the 
early researchers in this area of work are 
Timoshenko (1922), Kenny (1954), Milornir 
et al (1969), Fryba (1972) and Stanisic et al 
(1974). Recently, Oni (1990) considered the 
problem of a harmonic time variable 
concentrated force moving at a uniform 
velocity over a finite deep beam. The 
methods of integral transformations are 
used. In particular, the finite Fourier 
transform is used for the length coordinate 
and the laplace transform for the time 
coordinate. Series solution, which converges 

was obtained for the deflection of the simply 
supported beams. The analysis of the 
solution was carried out for various speeds 
of the load. Awodola (2007) considered the 
variable velocity influence on the vibration 
of a simply supported Bernoulli-Euler beam, 
resting on a uniform foundation, under the 
action of an exponentially varying 
magnitude load moving with variable 
velocity. Also, Ouchenane et al., (2009) 
analyzed the vibration of bridges structures 
under the influence of moving loads. More 
recently, Oni and Awodola (2011) 
investigated the dynamic behaviour under 
moving concentrated masses of simply 
supported rectangular plates resting on 
variable Winkler elastic foundation. It is 
observed from the aforementioned and many 
other works in literature that the influence of 
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mass per unit length on the deflection of the 
beam was not analyzed. Yet, the mass per 
unit length of the beam is of a great 
importance in Engineering practice and 
design. However, this work is set to 
investigate the influence of mass per unit 

length on the deflection of the beam. It is 
also set to analyze the phenomenon of 
resonance and the relationship between the 
critical speed and the mass per unit length of 
the uniform Rayleigh beam. 

 
THE GOVERNING EQUATION 
The equation of motion of a uniform Rayleigh beam undergoing transverse vibrations due to 
moving load is derived using Newton’s second law of motion. The equation governing the 
transverse motion of the uniform Rayleigh beam under the action of a moving load is a fourth 
order partial differential equation. The governing partial differential equation is given by: 
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where 
E=Young Modulus 
I=Moment of inertia of the cross section  
 =Mass per unit length of the beam 
b= Rotatary inertia 
V(x, t) = Transverse displacement 
P(x, t) = Impressed force 
The beam model, taken to be simply supported, has the boundary conditions   
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and the initial conditions take the form 
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The load moving on the elastic beam is assumed a constant magnitude load of the form 
 txP , =  )( 0 txxP                                                                               (5) 

where P indicates the magnitude of the load,  is the speed of the moving load. The function 
 x  is defined as: 
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and is called the dirac – delta function with the property: 
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Substituting (5) into equation (1), we have 
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METHOD OF SOLUTION 
The governing equation (8) is a fourth order partial differential equation with variable co-
efficients. To obtain the solution to the differential equation (8), the finite Fourier sine 
transform is first used to reduce the equation from the fourth order partial differential equation 
to a second order ordinary differential equation. 
The finite Fourier sine transform is given by: 
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with the inverse  
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Applying (9) and (7) in (8), taking into account the boundary conditions (2) and (3), we have 
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Equation (11) is rearranged to have 
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In order to solve equation (12), it is simplified to become  
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Using the Laplace transform given by 
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In other to find the Laplace inversion of equation (15), we use the convolution theorem defined 
as 

 GFL .1  = gf *  (16) 

where gf * =     
t

duugutf
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F and G are Laplace transform of f and g respectively 
Using (16), the laplace inversion of equation (15) is obtained as 
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Equation (18) is the response of the simply supported Rayleigh beam under the action of a 
moving load. 
 
ANALYSIS OF THE ANALYTICAL SOLUTION  
In studying undamped system such as this, it is highly desirable to examine the phenomenon of 
resonance. Equation (18) shows that the simply supported uniform Rayleigh beam traversed by 
a moving force reaches a state of resonance whenever 
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and hence the critical speed   is gotten to be 
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It is observed from equation (20) that if the mass per unit length of the beam increases, the 
critical speed will reduce. Hence, the mass per unit length of the beam should be made as small 
as possible to guarantee the safety of the load moving on the structure.  
 
ANALYSIS AND DISCUSSION OF THE RESULT 
Here, calculations of practical interests in Dynamics and Engineering design are presented. An 
elastic beam of length 12.192m has been considered. The flexural rigidity (EI) is taken to be 
6.068 x 106m3/s2 and velocity ( ) is taken to be 8.123m/s. The results are displayed in the 
plotted curves below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Deflection profile of a uniform Rayleigh beam under moving load for various values of 
mass per unit length 'µ'. 
 
The figure 1 above shows the displacement 
response of the simply supported Rayleigh 
beam under the action of moving load for 
various values of mass per unit length . It 
is shown that as   increases the 
displacement amplitude of the beam 
increases which implies that an increase in 
the mass per unit length of the beam reduces 
the critical speed.   
 
CONCLUSION                                                                                                
The influence of mass per unit length on 
the transverse deflection of a simply 
supported Rayleigh beam under the action 

of moving load has been investigated. The 
load is assumed to move with constant 
speed. The governing fourth order partial 
differential equation is solved and the 
deflections for various values of the mass 
per unit length of the beam were obtained 
and plotted against time (t). The 
phenomenon of resonance was analyzed. 
It was found that the deflection amplitude 
of the beam increases with increase in the 
value of the mass per unit length. The 
analysis of resonance reveals that an 
increase in the mass per unit length of the 
beam reduces the critical speed of the 
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moving load. This work suggests to the 
field engineers in the construction of 
structures such as bridges that reducing 
the mass per unit length of the structure 
will guarantee a better safety of the load 
moving on the structure.  
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