Criteria for Award of Contract under “Due Process” Policy in Nigeria

I. O. AJE¹ and O. T. IBIRONKE
Department of Quantity Surveying, School of Environmental Technology, Federal University of Technology, Akure, Nigeria

ABSTRACT: The “Due Process” policy in contract award was introduced to ensure the selection of the most appropriate contractor to deliver construction projects as specified so that the best value for money is ensured. Inspite of this, project delivery in Nigeria has been characterised by inefficiency in terms of cost overrun, time delay and poor quality standards. This study investigates the criteria often considered by clients in the award of contract after the prequalification exercise by a survey of questionnaire addressed to construction professionals in the Client, Contracting as well as Consulting organisations. Data collected were analysed with the aid of simple percentiles and mean score while the test of hypothesis was carried out using students’ t-test. The result reveals that the overriding criterion usually adopted for contract award after contractors’ prequalification still remains the lowest bidder because the client who has the final decision as to the award of contract cannot distinguish between lowest realistic bidder and lowest bidder. This has accounted for the low performance of projects procured under “Due Process” policy in terms of quality and time. The finding of this research is therefore a bold step and necessary guide for awarding contracts to the optimum tenderer whose tender figure is realistic enough to execute the project to the required quality within acceptable contract duration. It will further improve the effectiveness of the “Due Process” policy in construction project delivery in Nigeria most especially in the areas of time and quality performance.

Keywords: Contract award, Criteria, Due Process, Nigeria

INTRODUCTION

The construction industry in Nigeria is regarded as an essential and highly visible contributor to the process of growth. The importance of the construction industry stems from its strong linkages with other sectors of the economy. It stimulates the growth of other sectors through a complex system of linkages (Ofori and Lean, 2001). The construction sector also represents the largest employer of labour (directly or indirectly) in the private sector in Nigeria; and thus forms a crucial focus of the national economy (Ilhan and Yaman, 2011). The construction industry generates income through the sale of its products; the purchase of its inputs and the creation of jobs (Olatunji, 2010). The importance of the industry in the economy is due largely to the direct and indirect impact it has on the national economy. Therefore the volume of activities in the construction industry has always been used as a gauge for measuring the overall development of any nation.

¹ Correspondence to I.A. Aje, aje_niyi2002@yahoo.com

Considering the significant position of the construction industry in the nation’s economy therefore, there is the need for improved efficiency, productivity, administration and management of construction activities with adequate solutions to the setbacks and problems that may want to confront the industry. There is also the need for improvement of current procurement system so as to assist in improving the products of the industry and the image of the professionals (Ayangade et al., 2009). Ofori (1990) defines construction industry as that sector of the economy which plans, designs, constructs, alters, maintains, repairs and eventually demolishes building of all kinds including civil, mechanical and electrical engineering and other similar works. From this definition, construction activities can thus be divided into design and construction stages.

Manavageni and Xunzhi (2001) in corroborating this view, note that the successful completion of any construction project involves the efficient execution of two major processes: design and construction. The design stage involves the appointment of consultants by the client where his needs and intentions are transformed into documents and information. The consultants prepare tender/contract documents and advise the client on the employment of a contractor at a price to construct the project within a particular period in accordance with the design and specifications set for the project. However, regardless of project nature, contract form or procurement route, the often onerous task of selecting a contractor will have to be addressed at an early stage of any construction programme (Holt et al., 1995; Rwelamila and Edries, 2007). Holt (1996) posits that part of any construction project procurement role involves the client at some stage having to select a contractor, and this decision directly affects the success or otherwise of a project outcome. This is because the way a contractor is selected determines the course of the process and the contractors’ strategic behaviour during the rest of the project which can make all the difference between a successful project and unsuccessful one (Kremers et al., 2010). Thus, a wrong approach may make a project stillborn in the worst case, while a right approach guarantees successful completion.

Hatush and Skitmore (1997) observe that there has been a steady increase in the range of methods used for the procurement of construction works in the last two decades. Despite this, there has been no commensurate improvement in the success rate of construction projects. Instead, there have been extensive delays in the planned schedule, cost overruns, serious problems in quality and an increased number of claims and disputes; which have become unsatisfactory to the operation of construction contracts in Nigeria. The practices and procedures for selecting contractors and awarding contracts in the construction industry worldwide are based on the principles of acceptance of the lowest tender price (Topcu, 2004). However, the evaluation and selection of contractors on lowest price basis is one of the major causes of project delivery problems (Hatush and Skitmore, 1998). This is because Contractors, when faced with shortage of work are more likely to submit low tenders simply to stay in business in the short term and in the hope of somehow raising additional cost or delivering shoddy job to compensate.

The shortcomings of the procurement system informed the introduction of the “Due process” policy of contract award in Nigeria. The “Due Process” policy according to Budget Monitoring and Project Implementation Unit (BMPIU, 2005) is a mechanism for ensuring strict compliance with openness, competition and cost accuracy, rules and procedures that should guide contract award within the Federal Government of Nigeria. It is hence imperative under the policy that contractors are prequalified prior to the bidding process while the contractor submitting the lowest bid is awarded the contract after the prequalification. However, Udensi (2005) observes that despite the good intentions of the “Due Process” policy; a major problem that has been identified in its implementation is the same problem that created the need for the policy. Contracting firms operating in Nigeria as well as the clients (most especially the public clients) now believe that the overriding criterion for contract award is the submission of lowest bid after the prequalification. Consultants have therefore found themselves in difficult situations because they may still have to be accountable for their decisions when recommending tenders other than the lowest bid. Considering the foregoing therefore, it is pertinent to evaluate the criteria for contract award under the due process policy with a
LITERATURE REVIEW

A robust pre-qualification process at the tender evaluation stage in selecting the right contractor is an important first step for ensuring success in project (Doloi, 2009). The major factors of tender evaluation according to Alsugair (1999) include project location, tender understanding, completeness of tender documents, contractor prequalification and financial evaluation. Other factors according to Watt et al., (2009) include experience and reputation of the contractor, organization of the contractor and submission of alternative offers. Implementation of this procedure will therefore assist tender evaluators in performing objective assessment of contractors’ tender. The winner of a competitive bid is that competent bidder (i.e. a prequalified and technically evaluated bidder) who offers the client the lowest cost for the execution of the contract (Mshelbwala, 2005). However, there is a growing urge for a shift from lowest price wins philosophy to multi-criteria selection practices in contractor selection process. The rationale according to Wong et al., (2000) is to achieve best value for money for the client. This is because the competitive tendering process for awarding construction contracts based on the lowest tender is making client to run a significant risk of selecting a contractor that has either accidentally or deliberately submitted an unrealistically low price (Ioannou and Leu, 1993). Contractors cannot adhere to such a price and at the same time expect to complete the project according to plans and specifications, and also make a reasonable profit.

Jagboro and Ogunsemi (1997) observed that the Quantity Surveyor’s estimate is traditionally accepted as the basis for comparing all tenders. Thus it is a common practice to expect the successful tender to lie within -10% to +10% of the Quantity Surveyor’s estimate. While conceding the fact that this practice has been long in usage, they argue that there is no basis for choosing this percentage margin. Supporting this view the guideline on the award of contract issued by the BPIMU (2005) states that “the former practice of applying plus or minus percentage deviation from the consultants estimate no longer suffice. This, according to BMPIU (2005), has been overtaken by the due diligence taken during the prequalification exercise which aims at determining technically competent contractors; and thereafter commercial competition becomes the overriding criterion.” It is therefore important for any contractor adjudged to be technically capable to execute a project after the prequalification exercise to submit a realistic bid during the commercial bid. This is because clients will normally seek to award the contract to the tenderer submitting the lowest evaluated responsive tender after the prequalification exercise (FIDIC, 1994). However, there has being a general misconception about the principle of lowest tender and lowest responsive tender among contractors and clients in the construction industry in Nigeria. Thus, a contractor might be prequalified and yet may not submit a responsive bid if the bid so submitted is unrealistically too low to execute the project in accordance with the specification. Sees et al., (2009) also affirm that the most frequently used method of selecting construction contractors is by competitive bidding in which the lowest responsive bidder is awarded the contract. In Nigeria for example under the “due process” mechanism, the lowest bidder is awarded the contract once they have been prequalified prior to tendering. This practice is however being abused currently because bidders no longer submit genuine tenders simply because they are desperate to win the project and either get away with the mobilization advance paid or lower the quality specified for the project (Aje, 2008). The low bid submitted by contractors may therefore be a desperate attempt to maintaining cash flow by a contractor with liquidity problems, while also poor economic climate may encourage contractors to quote low simply to maintain continuity of employment (Hammad et al., 2010).

In view of the problems associated with the selection of lowest bid many countries have introduced modifications involving clearly defined procedures for bid evaluation to this lowest bidder criterion. The variations in these procedures however still serve the common objective of selecting a qualified contractor on a competitive basis.
Hatush and Skitmore (1998) report on the technique usually adopted in selecting a realistic bid for construction project in some selected countries as follows: in Denmark for example, the highest and the two lowest tenders are excluded and the closest to the average of the remaining bids is selected. A similar procedure is used in Italy, Portugal, Peru and South Korea but with only the lowest and highest bidder being excluded. In Saudi-Arabia, the lowest bidder is selected provided that the bid is not less than 70% of the consultants’ estimate. In Canada and USA, especially in the public sector, the lowest bidder is selected but a bid bond in an amount equal to 10% of the bid price also has to be provided. The French practice according to Hatush and Skitmore (1998) is to exclude bids which appear to be abnormally low. In all these cases the overriding criterion for contractor competition and selection is the bid prices. It is therefore expedient for the Bureau of Public Procurement to take a queue from these countries and modify the conditions for award of contracts in Nigeria. This is because the tender process should obtain for the client the most competitive price for the construction given the prevalent market conditions. The choice of contractors should therefore be made on a value for money basis rather than automatically accepting the lowest bid with the ultimate aim of identifying the best tender (Holt et al., 1994). Moreover it is unwise to pay too much but it is worse to pay too little while the common law of business balance prohibits paying a little and getting a lot. Therefore when the lowest bidder is considered in the award of contract, it is also better to allow a percentage of the cost to cover the risk associated with selection of lowest bid and once this is achieved, there would be enough to pay for quality job.

MATERIALS AND METHODS

This study was conducted in two major Nigerian cities: Abuja and Lagos. These cities were selected because majority of construction practitioners, clients and contractors have their operation office in these two cities. More importantly, Abuja is the seat of government where a lot of development in terms of construction is currently going on. The data for the study were collected through questionnaire addressed to Architects, Engineers, Quantity Surveyors and Builders drawn from clients, consultants and contractors’ organizations. Prior to data collection, pilot study was carried out using the initial draft of the questionnaire to ensure that the research instrument would establish the most productive form of data analysis. The input and the results generated from the pilot study were used to refine the questionnaire before the industry-wide survey was carried out. Reliability test was also conducted on the research instruments using Cronbach’s alpha (\(\alpha \)). According to Nurosis (1992), a figure of \(\alpha \) near to 1 shows higher reliability. The reliability coefficient for the instrument relating to criteria for contract award was found to be 0.812. This signifies that the instrument used for the study was reliable. In order to have a defined sample size, the list of all practicing professionals and contractors who were financial members of their respective professional institutions and based in the study area were obtained from their professional bodies. In all, a total sampling frame of 1,355 respondents was determined and this represents Architects, Civil/Structural Engineers, Quantity Surveyors, Builders. Table 1 shows the sampling frame of respondents in this study.
I.O. Aje, O.T. Ibironke

Table 1: Sampling frame of Respondents

<table>
<thead>
<tr>
<th>Ref No.</th>
<th>RespondentS</th>
<th>Lagos</th>
<th>Abuja</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Architects</td>
<td>233</td>
<td>107</td>
<td>340</td>
</tr>
<tr>
<td>b.</td>
<td>Structural Engineers</td>
<td>214</td>
<td>98</td>
<td>312</td>
</tr>
<tr>
<td>c.</td>
<td>Quantity Surveyors</td>
<td>148</td>
<td>58</td>
<td>206</td>
</tr>
<tr>
<td>d.</td>
<td>Professional Builders</td>
<td>107</td>
<td>67</td>
<td>174</td>
</tr>
<tr>
<td>e.</td>
<td>Contractors</td>
<td>97</td>
<td>64</td>
<td>161</td>
</tr>
<tr>
<td>f.</td>
<td>Clients</td>
<td>63</td>
<td>99</td>
<td>162</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>862</td>
<td>493</td>
<td>1355</td>
</tr>
</tbody>
</table>

Based on this, the sample size for the various categories of respondents was calculated from the following formula as used by Shash and Abdul-hadi (1992)

\[
n = \frac{n'}{1 + \frac{n'}{N}}
\]

Where \(n \) = sample size: \(n' = \frac{S^2}{V^2} \)

\(N \) = Total population, \(V \) = Standard error of sampling distribution = 0.05,
\(S \) = the maximum standard deviation in the population elements, \(P \) = the proportion of population elements that belong to the defined class

Substituting the pre-determined variables, the sample size for each of the study population and their respective locations are as shown in Table 2

Table 2: Sample size for the category of Respondents

<table>
<thead>
<tr>
<th>RespondentS</th>
<th>Lagos</th>
<th>Abuja</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architects</td>
<td>66</td>
<td>26</td>
<td>92</td>
</tr>
<tr>
<td>Structural Engineers</td>
<td>55</td>
<td>31</td>
<td>86</td>
</tr>
<tr>
<td>Quantity Surveyors</td>
<td>49</td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>Professional Builders</td>
<td>43</td>
<td>18</td>
<td>61</td>
</tr>
<tr>
<td>Contractors</td>
<td>38</td>
<td>21</td>
<td>59</td>
</tr>
<tr>
<td>Clients</td>
<td>28</td>
<td>33</td>
<td>61</td>
</tr>
<tr>
<td>Total</td>
<td>279</td>
<td>148</td>
<td>427</td>
</tr>
</tbody>
</table>

Having defined the study population, the research adopted random sampling technique. A total of 194 questionnaire were collected out of 427 questionnaire distributed. This represents about 45.43% of the sample size which is far above the typical of the norm of 20-30% response rate in questionnaire survey of the construction industry (Akintoye and Fitzgerald, 2000; Fellow and Liu, 1997). The aspects of the questionnaire relating to background information of respondents were analysed using percentiles. Secondly, the evaluation of the conditions for contract award was carried out using mean score while the hypotheses were tested with the aid of students’ t-test. The hypotheses tested at 5% significance level were as follows:
Contract award under “Due Process” Policy

(H01): There is no agreement between clients and consultants in ranking the importance of the criteria for award of contracts
(H02): There is no agreement between clients and contractors in ranking the importance of the criteria for award of contracts.
(H03): There is no agreement between consultants and contractors in ranking the importance of the criteria for award of contracts.

RESULTS AND DISCUSSION

Background Information of Respondents
Table 3 shows the summary of the background information about the respondents. It is observed from the Table that 35.6% of the respondents have postgraduate qualifications while about 64.4% have minimum of Higher National Diploma in their various fields of study. Furthermore, about 9.8% of the respondents are Fellow members of their respective professional bodies, 71.1% and 19.1% of them are also corporate and graduate members of their professional bodies respectively. Moreover, the respondents have an average of about 17.46 years experience in the construction industry and have also participated in about 11 prequalification exercises on the average within the last three years. Based on the above analysis therefore, it can be concluded that the data provided by the respondents can be relied upon for the purposes of analysis.

Table 4 shows the perception of respondents’ on the assessment of the conditions for award of contract after prequalification exercise. From the result, the conditions for award of contract in order of importance are the following: (i) Lowest realistic bidder after prequalification (ii) Lowest tender that falls within −10% to +10% of the consultants’ figure (iii) the highest rated contractor on commercial + Technical bid (iv) The highest rated contractor after the evaluation of the tender sum and completion time (v) Average bid method (vi) Lowest bidder after the prequalification exercise and (vii) Highest bidder after the prequalification exercise. The above result shows that respondents are more familiar with conditions 1 and 2; and the fact that lowest realistic bidder after the prequalification exercise is most preferred shows that public clients generally are in tune with the rules of the due process that contracts must be awarded to the lowest bidder after the prequalification exercise.

However, the client has the final say on matters relating to contract award, from the responses of the client. It is clear that public clients cannot draw any distinction between lowest realistic bidder and lowest bidder and that may have been the major reason why contracts awarded under the due process policy usually fails in terms of quality and time performance. This is because when contracts are awarded to the lowest bidder who for instance have a deviation of over 30% from the consultants’ figure, the contractor is bound to execute shorrdy job and in some cases, contractors abandon the site and later return to the site and manage to complete the job because of the fear of being arrested by the officials of the Economic and Financial Crime Commission (EFCC). The overall mean score on average bid method when compared with the mean score of the individual category of respondents also shows that this method is not popular within the Nigerian construction industry as it is being used in other countries such as United States of America, United Kingdom and other developed countries of the world.

Furthermore, it can be observed from the result in Table 2 that the P-Values are generally significant (P-Value < 0.05). This shows that there is no consensus among the categories of respondents as to the assessment of the conditions for award of contracts. This implies that there is no definite condition for award of contract in Nigeria. Procuring entity may therefore seek to adopt any condition that suits a particular situation while they find explanation for such action. The fact that there is no definite condition for award of contracts in Nigeria may have also being a major factor why corrupt practices still characterize construction contract award in Nigeria.
Table 4: Assessment of the Criteria for Award of Contracts

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Clients’ Mean</th>
<th>Rank</th>
<th>Consultants’ Mean</th>
<th>Rank</th>
<th>Contractors’ Mean</th>
<th>Rank</th>
<th>Overall Mean score</th>
<th>Rank</th>
<th>F-Stat. (p-value)</th>
<th>Level of Sig. (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest Realistic bidder after prequalification</td>
<td>3.85</td>
<td>1</td>
<td>4.55</td>
<td>1</td>
<td>3.36</td>
<td>6</td>
<td>4.19</td>
<td>1</td>
<td>26.998</td>
<td>0.001*</td>
</tr>
<tr>
<td>Lowest tender that falls within –10% to +10% of consultants’ figure</td>
<td>3.15</td>
<td>3</td>
<td>4.33</td>
<td>2</td>
<td>3.74</td>
<td>3</td>
<td>4.03</td>
<td>2</td>
<td>12.150</td>
<td>0.000*</td>
</tr>
<tr>
<td>The highest rated contractor after the commercial and technical bid</td>
<td>3.04</td>
<td>5</td>
<td>3.96</td>
<td>3</td>
<td>3.86</td>
<td>1</td>
<td>3.81</td>
<td>3</td>
<td>7.630</td>
<td>0.001*</td>
</tr>
<tr>
<td>The highest rated contractor after the evaluation of bid sum and completion time</td>
<td>3.07</td>
<td>4</td>
<td>3.85</td>
<td>4</td>
<td>3.86</td>
<td>1</td>
<td>3.74</td>
<td>4</td>
<td>6.007</td>
<td>0.003*</td>
</tr>
<tr>
<td>Average bid method (i.e. the contractor closest to the average of all the bids submitted)</td>
<td>2.85</td>
<td>6</td>
<td>3.73</td>
<td>5</td>
<td>3.50</td>
<td>4</td>
<td>3.56</td>
<td>5</td>
<td>6.817</td>
<td>0.001*</td>
</tr>
<tr>
<td>Lowest bidder after prequalification</td>
<td>3.85</td>
<td>1</td>
<td>2.72</td>
<td>6</td>
<td>3.31</td>
<td>7</td>
<td>3.01</td>
<td>6</td>
<td>6.975</td>
<td>0.001*</td>
</tr>
<tr>
<td>Highest bidder after pre-qualification</td>
<td>2.04</td>
<td>7</td>
<td>2.12</td>
<td>7</td>
<td>3.38</td>
<td>5</td>
<td>2.39</td>
<td>7</td>
<td>20.694</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

*Significant at p < 0.01
TEST OF HYPOTHESIS

The result of the t-test on the hypotheses is as detailed in Table 5. The statistical level of significance for the acceptance of the hypothesis where appropriate was set at 0.05.

Table 5: Test of Agreement for Ranking of Conditions for Award of Contracts as Perceived by Different Groups

<table>
<thead>
<tr>
<th>Project Participants</th>
<th>Rs</th>
<th>Reject H₀?</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clients & Consultants</td>
<td>0.762</td>
<td>Yes</td>
<td>Sig < 0.05</td>
</tr>
<tr>
<td>Consultants & Contractors</td>
<td>0.850</td>
<td>No</td>
<td>Not Sig>0.05</td>
</tr>
<tr>
<td>Clients & Contractors</td>
<td>0.790</td>
<td>Yes</td>
<td>Sig < 0.05</td>
</tr>
</tbody>
</table>

Rs = Spearman’s rank correlation co-efficient; H₀ = Null hypothesis, p-value = probability that rejects the null hypothesis wrongly.

It is observed from the Table that for clients and consultants the spearman’s rank correlation co-efficient (Rs) = 0.762 and the P-value is 0.00 i.e. it is significant. Therefore the null hypothesis of no agreement between clients and consultants in ranking the importance of the conditions for award of contract is rejected. While the alternate hypothesis (H₁) that there is agreement between clients and consultants in ranking the importance of the conditions for award of contract is accepted. Furthermore, the analysis also revealed that for consultants and contractors the spearman’s rank correlation co-efficient (Rs) = 0.850 and the p-value is not significant. Based on this therefore, the null hypothesis (H₀) that there is no agreement between consultants and contractors in ranking the importance of the conditions for award of contracts is accepted.

Moreover, for clients and contractors, the value of the spearman’s rank correlation co-efficient = 0.790 while the p-value is significant hence the null hypothesis that there is no agreement between clients and contractors in ranking the conditions for award of contracts is rejected, while the alternate hypothesis (H₁) that there is agreement between clients and contractors in ranking the conditions for award of contracts is accepted. The test of this hypothesis has however confirmed that clients have positioned themselves as intermediary between the consultants and the contractors by agreeing with them on any condition in the interest of the project. While the contractors see the consultants at times as obstacles that prevents them from getting whatever they want from the clients and hence may not agree to their proposals; and therefore strengthens the fact why consultants and contractors are usually in disagreements in most projects which usually affects the performance of the project in terms of cost, time and quality. Furthermore, the fact that the contractors and consultants do not agree on the importance of the conditions for contract award may have necessitated the significant discrepancies between the consultants’ figure and the contractors’ tender sum noticed in most public projects under the due process policy in Nigeria.

POLICY IMPLICATIONS, RECOMMENDATIONS AND CONCLUSIONS

Automatic selection of the lowest tenderer as is currently being done under the Due Process policy is risky and cannot guarantee efficient project performance in terms of time and quality. The findings of this research revealed that there is no standardized criterion for contract award after contractors’ prequalification in Nigeria. However, the overriding criterion usually adopted for contract award after contractors’ prequalification still remains the lowest bidder. Although this system may suggest monetary savings; it may not provide best value or economical end result.
The research has therefore revealed that the client who has the final decision as to the award of contract cannot distinguish between lowest realistic bidder and lowest bidder. This have accounted for the low performance of projects procured under Due Process policy in terms of quality and time. It is therefore recommended that a more refined method of awarding contracts to the optimum tenderer whose tender figure is realistic enough to execute the project to the required quality within acceptable contract duration. This can be achieved by ensuring that contractors whose tender sum does not falls within –10% to +10% of the consultants’ figure are eliminated as it is being done prior to the introduction of Due Process policy. This will further improve the effectiveness of the Due Process in construction project delivery in the areas of time and quality performance. There is also the need for contractors to refine their orientation towards tender price and contract time determination during the tendering process. This is because in most cases contractors as a result of desperate desire to win a job will submit unrealistic tender figure and contract period and this put the consultants and the clients in difficult situations during tender analysis and decision making in line with Due process guidelines. The Nigerian Institute of Building (NIOB) in collaboration with the Nigerian Institute of Quantity Surveyors (NIQS) and Federation of Construction Industry (FOCI) should organize training workshop for contractors on tender preparation. Moreover, there is the need for the Nigerian Institute of Quantity Surveyors (NIQS) to revive the journal on cost data where cost of building materials and built-up rates for various items of works are published. This will enable clients and other stakeholders in the construction industry to know the minimum rate for which an item of work can be executed. It is also of prime importance to ensure that tenderers understand the scope of work, technical requirements and other contractual terms and conditions of the contract so that they can submit accurate and comprehensive tenders. Therefore, clients in conjunction with the consultants should always ensure they clarify doubts and ambiguities in tender documents resulting in a more accurate set of tender document through pre-tender meetings and this will minimize future complications and claims during actual construction.

REFERENCES

UNSOLICITED REFERENCES
