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ABSTRACT: The effectiveness of kernelized support vector machine in classification depends on
the choice of kernel function, kernel parameter and soft margin parameter. In practice, there is
need for proper guidance on the combination of kernel functions and soft margin parameters to be
used. An insight into this is provided in this study. In this paper, we explore the notion of support
vector machine and its kernelized version, investigate the performance of some kernel functions
and soft margin parameters in support vector classification for some training sample sizes in .
We also examine the performance of kernelized support vector machine in functional setting and
compare the classifier with maximum functional depth classification methods and centroid classifier
based on simulation.
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INTRODUCTION

Classification has become one of the most widely
used tool to statisticians as well as computer
scientists  due to a huge amount of online
information available these days and it has
become paramount to almost all businesses to
use these information to target their potential
customers (Makinde and Chakraborty, 2015).
Several methods have been extensively studied
in literature. Bayes rule, linear discriminant
analysis and quadratic discriminant analysis are
some of the most extensively studied parametric
methods in classification. Some nonparametric
methods have also been proposed in recent time
to solve classification problem. These include
distance to mean classifiers (Delaigle and Hall,
2012), nearest neighbour rule (Cover and Hart,
1967, Murty and Devi, 2011), distance to median
classification rules (Hall, Titterington and Xue,
2009). Maximum depth classifiers (Ghosh and
Chaudhuri, 2005; Li, Cuesta-Albesto and Liu,
2012) is another nonparametric classification
method in literature. Data depth measures how

central or outlying an observation is to its
distribution or data cloud. Maximum depth
classifier assigns an observation to the class for
which it attains highest depth value.
The foundation of support vector machines
(SVM) was developed by Vapnik (1982). SVMs
have been successfully applied in solving
classification problems in different fields of
study. Popularity of SVMs can be attributed to
its successful performance in many real
applications. Girosi (1998) attributed
attractiveness of SVM to the ability to condense
information in the training data and provide a
sparse representation by using support vectors,
a subset of given training data. Cortes and Vapnik
(1995) upgraded this method from maximum
margin idea to soft margin approach. Park and
Liu (2009) proposed use of alternative criterion
instead of maximum separation criterion whose
solution depends solely on subsets of the
training data. Suykens and Vandewalle (1999)
proposed least square version of support vector
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machine. Li and Yu (2008) proposed functional
segment discriminant analysis (FSDA) which
combines classical linear discriminant analysis
(LDA) as a data reduction tool with support
vector machine as classifier. In their proposal,

-statistic is used to select the features on which
LDA is applied for data reduction. The first 
features with largest  statistic values are
selected. For sparse functional data (small
sample size, large dimention), FSDA uses LDA
on short curve segments instead of the whole
spectrum.
Kernel trick has been applied in classification
for algorithms which solely depends on the inner
product of two vectors. This is based on the
fact that inner product can be replaced by a
kernel function. An example of this is support
vector machine. Vapnik (1998), Chapelle et al.
(2002), Rossi and Villa (2008) proposed replacing
inner product in support vector machine with
kernel function. Extension of this approach in

infinite-dimensional setting is discussed in
literature. See Li and Yu (2008). Amari and Wu
(1999) proposed a method of modifying a kernel
function to improve the performance of a support
vector machine classifier, which is based on the
structure of the Riemannian geometry induced
by the kernel function. Tong and Koller (2001)
introduced a new algorithm for performing active
learning with support vector machines. In this
study, we explore the notion of kernel based
support vector machine and investigate the
performance of some kernel functions and soft
margin parameters in support vector
classification in . We also examine the
performance of kernelized SVM in functional
data setting. This paper aims to elicit the hidden
characteristics and performance of kernel based
support vector machine in d-dimensional space
and in function space. It answers a big question
about which kernel function should be used with
any of the soft margin parameters.

SUPPORT  VECTOR  MACHINE

Suppose (𝒙, 𝒚) is a pair of random variable in

which 𝑦, class membership takes values in

{ −1, 1}  and 𝒙𝑖  ∈ 𝑆 , where 𝑆  is a set of

training data points in ℝ𝑑 ,   𝑖 = 1, 2, . . . , 𝑛. 
SVM aims at predicting the value of 𝑦𝑖   given

observed value for 𝒙𝑖  . SVM separates two
different classes of data by a hyperplane

{𝑥 ∶ < 𝑤, 𝑥 >  + 𝑏 =  0 }.

The corresponding classification rule is

𝑦𝑖 (𝑥)  =  𝑠𝑖𝑔𝑛(< 𝑤, 𝑥𝑖 >  + 𝑏) ,

where 𝑤  is to be estimated and 𝑏 is a constant
scalar. In order to obtain a best separating
hyperplane when training data are not linearly

separable, ||𝑤|| is minimised subject to the
decision rule for some positive slack variables

𝜉1, 𝜉2, … … , 𝜉𝑛 and soft margin parameter 𝐶. 
That is,

  min
𝒘,𝒃,||𝒘||

    
1

2
||𝒘||2 + 𝐶  𝜉𝑖

𝑛

𝑖=1

  (1)

subject to 𝑦𝑖 (< 𝑤, 𝑥𝑖 >  + 𝑏) ≥ 1 −  𝜉𝑖 ,   𝑖 = 1, 2, . . . , 𝑛 .
The soft margin parameter C, often refer to as
penalty parameter of the error term or cost of
constraint, controls the trade-off between margin
maximisation and error maximisation.
From the geometric perspective, SVM is a large
margin classifier. When training data are
separable, SVM separates two classes by
maximising the margin between them. For non-
separable data, the soft-margin SVM chooses a
separating hyperplane that splits two classes as
cleanly as possible, while still maximising the
distance to the support vectors, a subset of the
training samples on the separating hyperplane.
A desirable property of SVM is that its solution
depends only on support vectors. A limitation
of SVM is that its decision rule suffers from the
presence of redundant variables (Li and Yu, 2008)
and extreme outliers (Part and Liu, 2009). Ideas
on how to modify SVM to gain robustness are
included in Collobert et al. (2006) and Wu and
Liu (2007).
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KERNELIZED SUPPORT  VECTOR  MACHINE
Kernels are nonlinear mappings of observations
in  into feature space. Kernel functions in
literature include Gaussian kernel, linear kernel
(also called Vanilla kernel), polynomial kernel,
hyperbolic tangent kernel (also called sigmoid
kernel), exponential kernel, ANOVA kernel,
Bessel kernel, Cauchy kernel, Chi square kernel,
wavelet kernel, string kernel and Laplace kernel
among others. The essence of this is to
transform candidate linear algorithms into a non-
linear. Those non-linear algorithms are
equivalent to their linear originals operating in
the range space of a feature space.

Replacing 𝑤 in (1) by  𝛼𝑖

𝑖

𝑦𝑖 Φ(𝑥𝑖 ) subject to

𝛼𝑖 ≥ 0 and  𝑦𝑖 𝛼𝑖

𝑖

= 0 results in solving a dual

problem. There is no need of computing feature

function Φ(𝑥), a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗 ) can

be chosen to represent Φ(𝑥𝑖)
𝑇Φ(𝑥𝑗 )  in some

high dimensional space. The advantage of this
is that the resulting classifier is not affected by
the presence of noisy observation. The dual
formulation of the soft margin problem is defined

as  min
𝑤 ,𝑏,||𝑤||

    𝛼𝑖

𝑛

𝑖=1

+
1

2
 𝑦𝑖 𝛼𝑖𝑦𝑗 𝛼𝑗 𝐾(𝑥𝑖 , 𝑥𝑗 )

𝑛

𝑖=1

subject to          0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1, 2, . . . , 𝑛 

 𝑦𝑖 𝛼𝑖

𝑖

= 0 

Kernelized support vector machine (KSVM)
maps training vectors into a feature space using

a kernel function that defines an inner product
in the feature space. This provides consistent
classification in both finite and infinite
dimensional spaces (Rossi and Villa, 2008).
When no prior information is available about
each of the attributes, Chapelle et al. (2002)
suggested use of spherical kernel, which assigns
equal weight to each attribute. Gaussian kernel,
most commonly referred to as radial basis
function, may be a better choice when attributes
have different scales of measurement. Furey et
al. (2000) applied kernel type in analysing gene
expression data.

Accounting for different soft margin
parameters
Kernelized support vector machines can use
different soft-margin parameters (Cortes and
Vapnik, 1995). The soft margin parameters (or
costs of constraint) are of three types, which are
C support vector classification(C-svc), 
support vector classification( -svc) and
bounded-constraint support vector
classification(C-bsvc). The  parameter sets the
upper bound on the training error and the lower
bound on the fraction of data points to become
support vectors. To the best of our knowledge,
there is no literature on kernelized support vector
machine where polynomial, linear, hyperbolic
tangent, Bessel, ANOVA, spline kernel functions
are employed. In the next section, we shall
consider the implications of different soft margin
parameters on the performance of support vector
machine.

NUMERICAL  EXAMPLE

As illustration of apparent error rates of the
kernelized support vector machine accounting
for effect of kernel functions and costs of
constraint on the performance of the classifier,
we present a simulation study. Let populations

𝜋1 and 𝜋2 be bivariate spherically symmetric
with centre of symmetries 𝜇1 and 𝜇2, and

covariance matrix, Σ1  and Σ2,  respectively..

Assume that the prior probabilities of 𝜋1 and 𝜋2

are equal. Suppose 𝑋1, 𝑋2, … ,  𝑋𝑛 is a random

sample from 𝜋1  and 𝑌1, 𝑌2, … ,  𝑌𝑚 , a random

sample from 𝜋2. We simulate a new random

sample 𝑍1, 𝑍2, … , 𝑍𝑚  from 𝜋1  and
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𝑍𝑚 +1, 𝑍𝑚 +2, … ,  𝑍2𝑚  from  𝜋2 and take sample
sizes n and m to be 100. The simulation is
repeated 1000 times. The competing
distributions considered are bivariate normal

distributions ൫N(μ1, I), N(μ2, I)൯,  bivariate

Laplace distribution ൫BL(μ1, I), BL(μ2, I)൯,  and
bivariate t distribution with 3 degrees of freedom

൫𝑡3(μ1, I), 𝑡3(μ2, I)൯, w h e r e μ1 = ቀ
0
0

ቁ  and μ2 = ቀ
𝛿
0

ቁ 

I is identity matrix.  For computation, we use R-
Package kernlab and employ 5-fold cross-

validation. The costs of constraint C and 𝜂  are
taken to be 1 and 0.2 respectively. For Gaussian
kernel function and Laplace kernel function, the

hyperparameter 𝜎  is determined automatically
by the sigest function in the same library and it
returns a value between the 0.1 and 0.9 quantile

of ||𝑥𝑖 − 𝑥𝑗 ||.

Figure 1 shows the error rate of three bivariate
distributions, namely normal, Laplace and t with

3 degrees of freedom, as 𝛿 varies in [−2, 2].  AsAs

expected, error rate is nearly 0.5 when 𝛿 = 0 

and it decreases as 𝛿 goes away from 0 and the
separation between the population increases. We
observe in Tables 1 and 2 that there is no
significant difference between the mean
performance of C-svc and C-bsvc for each of
the kernel functions used under normal and non-
normal settings. For normally distributed
samples, mean misclassification error is least
when combining either of liner kernel or
polynomial kernel with C-svc. Also, an equivalent
performance of KSVM is observed when
polynomial kernel is combined with C-bsvc as
shown in Table 1. Consider the non-normal
setting in Table 2, we observe that the optimal
performance of KSVM is obtained when linear
kernel is combined with C-svc irrespective of
the value of 𝛿 . In Tables 1 and 2, we observe
that c-bsvc does not work with linear kernel and
so misclassification errors could not be
computed for KSVM with linear kernels
irrespective of the distributions of the competing

populations. The performance of 𝜂 -svc is poor
compared to C-svc and C-bsvc.

Figure 1: Comparison of error rates of KSVM for different distributions using Gaussian
radial basis function
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Kernel function 
𝜹 = 𝟏  𝜹 = 𝟐 

C-svc 𝜼-svc C-bsvc C-svc 𝜼-svc C-bsvc 

Gaussian 0.3278 0.4265 0.3245 0.1696 0.2508 0.1686 
Polynomial 0.3112 0.4575 0.3127 0.1611 0.3546 0.161 
Linear 0.3115 0.4553 - 0.1603 0.362 - 
Hyperbolic tangent 0.4249 0.5506 0.4254 0.2823 0.6551 0.2837 
Laplace 0.326 0.3862 0.3287 0.1691 0.2071 0.169 
Bessel 0.3124 0.4937 0.3134 0.1618 0.4179 0.1614 
ANOVA 0.3135 0.5002 0.3149 0.1606 0.3568 0.1615 
Spline 0.4216 0.5393 0.4475 0.2859 0.6707 0.3122 

Table 1: Effect of kernel function type and cost function on the performance of KSVM for bivariate
normal distributed samples

Kernel function 
𝜹 = 𝟏 𝜹 = 𝟐 

C-svc 𝜼-svc C-bsvc C-svc 𝜼-svc C-bsvc 
Gaussian 0.3809 0.4675 0.3819 0.2577 0.3726 0.2583 
Polynomial 0.3857 0.4972 0.3606 0.2593 0.4597 0.2414 
Linear 0.3584 0.4991 - 0.2423 0.4653 - 
Hyperbolic tangent 0.4620 0.5199 0.4599 0.3740 0.5784 0.3711 
Laplace 0.3826 0.4356 0.3818 0.2563 0.3149 0.2564 
Bessel 0.3664 0.5094 0.3670 0.2430 0.4644 0.2441 
ANOVA 0.3609 0.5010 0.3635 0.2429 0.4566 0.2416 
Spline 0.4389 0.5097 0.4437 0.3532 0.5608 0.3772 

Table 2: Effect of kernel function type and cost function on the performance of the error rates
associated with KSVM for bivariate Laplace distributed samples

Kernel 
function 

Sample sizes 

20 50 100 200 

Gaussian 0.288975 0.27018 0.257735 0.250353 

Polynomial 0.2593 0.24324 0.2593 0.240098 

Linear 0.254725 0.24606 0.242295 0.241553 

Laplace 0.284225 0.26702 0.25633 0.250513 

Bessel 0.2587 0.25037 0.24296 0.242293 

ANOVA 0.266125 0.24928 0.24289 - 

Table 3: Effect of training sample sizes on the performance of KSVM for bivariate

Laplace distributed samples with 𝜹 = 𝟐  when c-svc is used
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Kernel 
function 

Sample sizes 

20 50 100 200 

Gaussian 0.2927 0.26733 0.258335 0.251005 

Polynomial 0.2610 0.2457 0.241405 0.240073 

Laplace 0.2828 0.2663 0.256365 0.251643 

Bessel 0.2597 0.2486 0.244115 0.243658 

ANOVA 0.2639 0.2466 0.24161 - 

Table 4: Effect of training sample sizes on the performance of KSVM for bivariate

Laplace distributed samples with 𝜹 = 𝟐  when c-bsvc is used

In Tables 3 and 4, implementation of KSVM for
classification using ANOVA kernel is almost
practically impossible with large training sample
size irrespective of the cost function used and
the distributions of competing populations. We

also observe from the tables that the larger the
training sample size, the less the mean error rate.
Misclassification error cannot be estimated for
KSVM using ANOVA kernel for large sample size
irrespective of competing distributions.

CLASSIFICATION  IN  FUNCTION  SPACE
In function space, kernel based support vector
machine can also be applied as discussed in
Rossi and Villa (2006, 2008). To examine the
performance of kernel based support vector
machine for functional data, we compare its
performance with depth based procedures and
centroid based classification method of Hastie,
Tibshirani and Friedman (2001). Centroid
classifier assigns an unclassified observation
to the class for which the unclassified

observation attains least 𝐿2 distance from the
class centroid. Consider the functional model in
Cuevas, Febrero and Fraiman (2007) and

Makinde (2016). The population 𝑃0 consists of

trajectories of the process 𝑋(𝑡)  =  𝑚0(𝑡) + 𝑒(𝑡), 
where 𝑚0(𝑡) =  30(1 −  𝑡)𝑡1.2  and 𝑒(𝑡) is a
Gaussian process with mean 0 and

𝑐𝑜𝑣(𝑋(𝑠), 𝑋(𝑡))  =  0.2 𝑒𝑥𝑝(−|𝑠 −  𝑡|/0.3). 
The process corresponding to 𝑃1 differs from

𝑋(𝑡) only in the mean function and is given by,,

𝑌(𝑡)  =  𝑚1(𝑡) +  𝑒(𝑡) with 𝑚1(𝑡)  =  30(1 −  𝑡)1.2𝑡.
The experiment is repeated 1000 times, mean and
standard error of the error rates are computed.
The functions are handled in a discretized
version based on 500 equispaced grid points

on [0, 1]. For maximum functional depth
classifier, three functional depths are considered.
The depth functions are h-mode depth (HMD),
Fraiman-Munic depth (FMD) and random
projection depth (RPD). To compute these
functional depth functions, we use R package
fda.usc with 10% trimming, and assign
observations to class with maximum depth value.
We choose the sizes of both training samples

and validation samples of 𝑃0  and 𝑃1  to be 100
and repeat the simulation for 1000 times. The
parameter h in the h-mode depth is chosen as

the 15 percentile in the 𝐿2  distances between
the functions in the training sample. We choose
the number of projections to be 100 for h-mode
depth while 50 projections for random projection
depth. Here Gaussian kernel is chosen for KSVM
with soft margin parameter (C-svc).
Table 5 presents the performance of KSVM,
maximal depth classifiers and centroid classifier
in term of average misclassification error for the
simulation procedures above. We observe that
KSVM performs noticeably better than
functional depth based classifiers and centroid

classifier in this example.
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Statistics 

Maximum depth classifiers Centroid 
Classifier KSVM FM Depth h-mode Depth RP Depth 

Mean 0.0712 0.0631 0.0528 0.0240 0.0138 

Standard error 0.0183 0.0343 0.0164 0.0107 0.0083 

Table 5: Comparison of the performance of KSVM with maximal depth classifiers for functional
data

CONCLUSION
In this paper, we have considered some factors
affecting the performance of kernelized support

vector machine for classification in ℝ𝑑 .  We have
noted in our examples that the performance of
support vector machine in classification does
not depend heavily on the training sample sizes
of the competing classes. Use of anova kernel
with C-svc or C-bsvc performs well for relatively
large training sample size. It becomes practically
impossible to use when training sample size is
larger than 100. The mean error rates of KSVM

associated with C-svc and C-bsvc are equivalent
and consequentially, KSVM performs well with
either of C-svc and C-bsvc except for normally
distributed classes when spline kernel functions
are used. The generalization of KSVM for
functional data is straightforward, so we examine
the performance of this extension in function
space and compare the performance of KSVM
with performance of maximum functional data
depth classification rule and centroid classifier
based on simulation study.
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